

INTERNATIONAL MOUNTAIN CONFERENCE

#IMC22

SEPTEMBER 11 - 15 2022

>> SYNTHESIZE MOUNTAINS OF KNOWLEDGE <<

Submitted Abstract

ID IMC22-FSAbstr- 321

First Author First Name Last Name	Erica (1) Siirila-Woodburn
Submitting Author First Name Last Name	Erica Siirila-Woodburn
Correspondence	erwoodburn@lbl.gov
Co-Authors >> E-Mails will be not listed	Rhoades, Alan (1); Hatchett, Benjamin (2); Huning, Laurie (3); Szinai, Julia (1,4); Tague, Christina (5); Nico, Peter (1); Feldman, Daniel (1); Jones, Andrew (1,4); Collins, William (1); Kaatz, Laurna (6); Maina, Fadji (7); Dennedy-Frank, P. James (1)
Organisations >> for readability limited to 5 >> full list can be found online	 Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA Western Regional Climate Center (WRCC), Reno, NV, USA Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA, USA Energy and Resources Group, University of California, Berkeley, Berkeley, CA, USA Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, CA, USA
Country	United States of America
Country Region	United States of America North America
Region	North America On The Use Of Bedrock Through Atmosphere Models To Understand
Region Title	North America On The Use Of Bedrock Through Atmosphere Models To Understand Mountainous Hydrologic Shifts In A Low-To-No Snow Future.

INTERNATIONAL MOUNTAIN CONFERENCE

SEPTEMBER 11 - 15 2022

>> SYNTHESIZE MOUNTAINS OF KNOWLEDGE <<

Abstract

Water management in the western United States (WUS), like many places globally, has a long-held reliance on snowpack, but anthropogenic climate change is decreasing seasonal snowpacks worldwide, posing substantial, potentially even catastrophic consequences on water resources. We present a synthesis of 21st century WUS snowpack projections and discuss the trickle-down impacts on the greater hydrologic cycle to better constrain the timeline of impending water failures. Through a new definition of low-to-no snow and a framework to contextualize the sequencing of snow drought years, results show that across the WUS, snow water equivalent is expected to decline ~25% by 2050, with losses comparable to historical trends. Using this framework, models suggest low-to-no snow will become persistent in ~35-60 years in the WUS if greenhouse gas emissions continue unabated.

These changes have potentially outsized impacts on the integrated hydrologic cycle. Many approaches struggle to infer the specific impacts given competing factors such as increased evapotranspiration, altered vegetation composition, and changes in wildfire behavior in a warmer world. Coupled atmosphere-through-bedrock models driven by high performance computing are powerful tools to disentangle non-linear and co-evolving processes across the critical zone in montane environments. Examples of recent advancements will be discussed, with a focus on the fundamental physical drivers of change. These include the role in which large precipitation events (including rain-on-snow events typical of atmospheric rivers) play on groundwater, as well as how atmospheric changes in future nearly snow-free years result in more ephemeral streams. These snow and hydrodynamic changes undermine conventional water management practices. However, proactive implementation of soft and hard adaptation strategies provide a potential avenue to build resilience to extreme, episodic and, eventually, persistent low-to-no snow conditions.

Research Area Mountain Regions Innrain 52f 6020 Innsbruck Austria WWW.IMC2022.INFO

imc2022@uibk.ac.at +43 512 507 54442